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ABSTRACT

In this chapter, we consider a perceptible variable that is related to τ, but is different from

τ.  The variable is phase, φ.  φ is similar to τ in that both are timing variables and both are

ratios of spatial variables that could be state variables of a dynamical system.  As such, either

could  be used to drive a damped mass-spring system to yield an autonomous dynamical

organization.  Finally, both τ and φ are perceptible variables.  We describe experiments in

which we have investigated the perception of relative phase.  Then, we describe a phase

driven and phase coupled dynamical model of bimanual coordination.  An important feature

of this model is that it can account for both movement study and judgment study results.

However, the  way the perceptible property is used in each case is task-specific.
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τ as a Temporal Variable Composed of Spatial State Variables  

In perception/action research, there have been two especially salient reasons to

hypothesize and investigate τ as a perceptible variable.  Both reasons relate to the problem of

timing actions and coordinating them with respect to objects in the surroundings that are

moving relative to the performer.  The first reason is that a temporal variable is most

appropriate for the control of timing.  Temporal variables are more commonly studied in

audition than in vision where the prevailing focus has been on spatial variables.  The problem

in ‘space perception’ is that the length dimension is lost in optical structure which is intrinsically

angular and temporal. (For extended discussion of the following, see Bingham (1988; and

1995).) Optical extents can be described in radians or degrees, but not centimeters or inches.

Extra-optical variables must be considered when investigating visual perception of length

related properties like size, distance, or velocity.  Perhaps related to this fact is the  recurrent

finding that space perception is rather inaccurate or imprecise when apprehension of lengths

(as opposed to length ratios) is required (e.g. Bingham & Pagano, 1998; Bingham, Zaal, Robin

& Shull, 2000; Tittle, Todd, Perotti & Norman, 1995; Todd, Tittle & Norman, 1995).  As an optical

variable, τ can only be angular and temporal, but it is equivalent to the ratio of the distance

and velocity of a surface moving towards an observer.  In the ratio, the length dimension

cancels leaving only time.  If τ is used by performers to scale their actions to the surroundings,

then the measurement problem in space perception can be avoided. 

The second reason to study τ emerged as perception/action research began to focus on

the issue of stability and the need to integrate perceptible variables into the underlying

dynamics of action.  The progenitor of task dynamic approaches to perception/action was the

λ-model (or Equilibrium Point (EP) model) of limb movement (Feldman, 1980; 1986; Feldman,

Adamovich, Ostry & Flanagan, 1990; Latash, 1993).   Feldman showed that the muscles and the

peripheral nervous system were organized to control joint motion as an abstract mass-spring

organization parametrized by stiffness and the EP.  Ignoring the differences among competing

mass-spring models (e.g. α-model versus λ-model), its now clear that the damped mass-spring

is fundamental to the organization of action (Bizzi, Hogen, Mussa-Ivaldi & Giszter, 1992;
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Feldman, Adamovich, Ostry & Flanagan, 1990; Hogan, Bizzi, Mussa-Ivaldi & Flash, 1987;

Latash, 1993).  The advantages of this organization all amount to stability.  The relatively

autonomous peripheral organization entails both short neural transmission distances and use

of intrinsic spring-like muscle properties to yield a nearly linear spring at the joint level

(Latash, 1993). The organization combines postural control with the control of movement to

yield fixed point stability or equifinality for end postures in discrete movements.  

Mass-spring organization yields stable posture, but the problem of movement stability

remains.

As fixed point stability is desirable for posture, limit cycle stability is desirable for

movements.  In perturbation experiments, Kay, Saltzman and Kelso (1991) found that

rhythmic limb movements exhibit limit cycle stability.  If the mass-spring organization is to be

used to account for rhythmic movement, then its necessary to drive the mass-spring to yield

limit cycle stability (Schöner, 1990; Zaal, Bootsma & van Wieringen, 1999).  The presence of

limit cycle stability implies, in turn, that the dynamic is nonlinear (Jordan & Smith, 1977), that

is, products or quotients of state variables appear in the dynamical equations.  Kay, et al. (1991)

also found that rhythmic limb movements exhibit phase resetting.  This means that the mass-

spring is driven in a way that preserves autonomous organization.  The driver is not itself

external to the oscillator dynamic, but instead must be a function of the behavior of the

oscillator itself.  The driver can not be a function of time, but instead must be a function of the

state variables of the oscillator, namely, position and velocity (x[t], v[t]).  Especially in tasks that

require interaction or coordination with events in the surroundings (e.g. catching a ball), the

dynamic must be driven perceptually.   This can be accomplished using τ, because τ combines

position and velocity in a quotient to yield time.  This solution was investigated initially by

Schöner (1991) and subsequently by others (Bingham, 1995; Zaal, Bootsma & van Wieringen,

1998).  (See the chapters by F.T.J.M. Zaal and by G.P. Bingham and F.T.J.M. Zaal in the current

volume.)  So, the advantages of τ are that it is temporal (not spatial), but is nevertheless

composed of spatial variables that can be the state variables in a dynamical (e.g. mass-spring)

system.  
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In the following, we introduce another variable that is, like τ, composed of a ratio of

position and velocity, spatial variables that can be state variables in a dynamical system.  Also

like τ, therefore, this other variable can be used to drive a mass-spring system to yield limit

cycle behaviors.  The other variable is phase, φ.  Unlike τ, however,  φ has not been treated as

a perceptible variable until fairly recently. 

Relative phase and the HKB Model

In coordination of rhythmic bimanual movements, relative phase is the relative position

of two oscillating limbs within an oscillatory cycle.  For people without special skills (e.g. jazz

drumming), only two relative phases can be stably produced in free voluntary movement at

preferred frequency (Kelso, 1995).  They are at 0° and 180°.  Other relative phases can be

produced on average when people follow metronomes, but the movements exhibit large

amounts of phase variability (Tuller & Kelso, 1989).  They are unstable. Preferred frequency is

near 1 Hz.  As frequency is increased beyond preferred frequency, the phase variability

increases strongly for movement at 180° relative phase, but not at  0° (Kelso, 1990).  If people

are given an instruction not to correct if switching occurs, then movement at 180° will switch

to movement at 0° when frequency reaches about 3-4 Hz (Kelso, 1984; Kelso, Scholz &

Schöner, 1986; Kelso, Schöner, Scholz & Haken,1987).  With the switch, the level of phase

variability drops.  There is no tendency to switch from 0° to 180° under any changes of

frequency.  

These phenomena have been captured in a dynamical model formulated by Haken,

Kelso and Bunz (1985).   The HKB model is a first order dynamic written in terms of the

relative phase, φ, as the state variable.  

increasing frequency

0 +180 0 +180 0 +180

  V(φ) = –a cos(φ) – b cos(2φ)
FIGURE 1.      The HKB model:
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The equation of motion, which describes the temporal rate of change in φ, that is, , is

derived from a potential function, V(φ), which captures the two stable relative phases as

attractors as shown in Figure 1. The attractors are wells or local minima in the potential layout.

As the dynamic evolves, relative phase is attracted to the bottom of the wells at 0° and 180°.  A

noise term in the model causes the relative phase to depart stocastically from the bottom of a

well.  The effect of an increase in frequency is represented by changes in the potential.  The

well at 180° becomes progressively more shallow so that the stochastic variations in relative

phase produce increasingly large departures in relative phase away from 180°.  These

departures eventually take the relative phase into the well around 0° at which point, the

relative phase moves rapidly to 0° with small variation.

Investigating phase perception

The HKB describes the basic phenomena of bimanual coordination intuitively.  People

asked to oscillate their limbs stably at 0° or 180° know what to do, but if they are asked to

oscillate at other phases, they do not.  0° and 180° are clearly delineated by the form of the

potential function which represents the relative stability (or inversely, the effort) of oscillating

at different relative phases.  People seem to know where these phases are in a space of relative

stabilities.  Nevertheless, we wondered:  what is the ultimate origin of the potential function in

this model?  Why are 0° and 180° the only stable modes and why is 180° less stable than 0° at

higher frequencies?  To answer these questions, we investigated the perception of relative

phase because the bimanual movements are coupled perceptually, not mechanically (Kelso,

1984; 1995).  The coupling is kinesthetic when the two limbs are those of a single person.

Schmidt, Carello and Turvey (1990) found the same behaviors in a visual coupling of limb

movements performed by two different people.  Similar results were obtained by Wimmers,

Beek, and van Wieringen (1992).  To perform these tasks, people must be able to perceive

relative phase, if for no other reason, than to comply with the instruction to oscillate at 0° or

180° relative phase. 
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Because the coupling is perceptual and because achievable phase relations seem to be

specified in a space of  relative stabilities (see Bingham, Zaal, Shull, and Collins (2001) for

discussion), we investigated the visual perception of mean relative phase and of phase

variability using both actual human movements (Bingham, Schmidt & Zaal, 1998) and

simulations (Bingham & Collins, in preparation; Bingham, et al., 2001; Zaal, Bingham &

Schmidt, 2000).  Participants observed two disks oscillating  on a computer monitor along

straight horizontal paths, one above the other. (Zaal, et al. (2000) also investigated motions in

depth which yield optical expansion and contraction, and  replicated the results for motion in a

frontoparallel plane.)  In Zaal, et al. (2000) and Bingham, et al. (2001), the manipulated

variables included mean relative phase (0°, 45°, 90°, 135°, 180°) and phase variability (0°, 5°,

10°, 15° phase SD).  Bingham, et al. (2001) also manipulated frequency (0.75 hz and 1.25 hz).

However, we will describe in detail results of Bingham and Collins (in preparation) which

replicated the previous results, but extended the manipulation of frequency to 1 hz, 2 hz, and 3

hz.  Different groups of ten participants each judged either mean relative phase or phase

variability on a ten point scale:  for mean phase, 1 = 0° and 10 = 180°; for phase variability, 1 =

'not variable' and 10 = 'highly variable'.  Participants received extensive instruction and

demonstrations distinguishing mean phase and phase variability.  They performed blocked

trials in which the variable being judged was manipulated while the other variable was held

constant.  Finally, participants were tested in a completely randomized design.  Results in the

blocked and randomized conditions were comparable.     

As shown in Figure 2, judgments of mean relative phase varied linearly with actual mean

relative phase.  However,, as phase variability increased, 0° mean phase was increasingly

confused with 30° mean phase.  Furthermore, as illustrated in Figure 4, although mean

judgments tracked actual relative phases very well, the variability of the judgments exhibited

an inverted-U pattern.  This meant that judgments of 90° relative phase, for instance, were far

less reliable than judgments of 0° relative phase.
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FIGURE 2.

We found that judgments of phase variability (or of the stability of movement)  followed

an asymmetric inverted-U function of mean relative phase, even with no phase variability in

the movement as shown in Figures 3 and 4.  This replicated the shape of the potential function

in the HKB model.  Movement at 0° relative phase was judged to be most stable.  At 180°,

movement was judged to be less stable.   At intervening relative phases, movement was

judged to be relatively unstable and maximally so at 90°.   Levels of phase variability were not

discriminated at relative phases other than 0° and 180° because those movements were

already judged to be highly variable even with no phase variability.   The standard deviations

of judgments followed this same asymmetric inverted-U pattern as shown in Figure  4.
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Finally, we investigated whether phase perception would vary in a way consistent with the

finding in bimanual coordination studies of mode switching from 180° to 0° relative phase

when the frequency was sufficiently increased.  Also, movement studies revealed that

increases in the frequency of movement yielded increases in phase variability at 180° relative

phase but not at 0° relative phase.  As shown in Figure 3, as frequency  increased, movements

at all mean relative phases other than 0° were judged to be more variable.  This was true in

particular at 180° relative phase.  Furthermore, as shown in Figures 3 and 4, this occurred even

when there was no phase variability in the movement.  Also in this latter case (i.e 0 phase SD),

frequency had no effect on judged levels of phase variability at 0° mean phase (although in

cases of 5°, 10° and 15° phase SD, actual phase variability became less salient at higher

frequencies).   Again, mean phase was judged accurately on average, but  as frequency

increased, judgments tended to drop as shown in Figures 2 and 4.  As also shown, the pattern

of results for mean judgments of phase variability was replicated in the pattern of results for

judgment variability both for judgments of mean phase and of phase variability.   
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Mean Results for 0 Phase SD Only (i.e. no actual phase variability)

These results were all consistent with the findings of the studies on bimanual

coordination.  The asymmetric inverted-U pattern of the judgments in Figures 3 and 4 is

essentially the same as the potential function of the HKB model. The potential represents

the relative stability of coordination or the relative effort of maintaining a given relative phase.

The two functions match not only in the inverted-U shape centered around 90° relative phase,

but also in the asymmetry between 0° and 180°.  180° is perceived to be less stable than 0° and

increasingly so as frequency increases.  This congruence of the movement and perception

results supports the hypothesis that the relative stability of bimanual coordination is a function

of phase perception and its stability. 

Endpoints versus the trajectory 

Many rhythmic tasks entail moving in synchrony with a discrete auditory pulse, that is, a

metronome.  Perhaps this has inspired a common intuition that the perception of rhythmic
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movements focuses on the endpoints of movement.  Indeed, rhythmic movements could be

generated using a mass-spring by simply switching the position of the EP discontinuously

from one endpoint to the other (although Feldman and his co-authors explicitly reject this

possibility  (Feldman, Adamovich, Ostry & Flanagan, 1990)).  If perception of relative phase

depended only on relative positions at endpoints of motion, then stability only at 0° and 180°

relative phase would  be predicted.  We investigated whether perception of relative phase

focused on the endpoints of motion or instead, used the entire trajectory of oscillation.  We

could not use selective occlusion of portions of the trajectories to address this question because

discontinuities at occlusion boundaries would perturb motion perception strongly.  Instead, we

chose to put phase variability selectively into portions of the oscillatory cycle as follows. See

Figure 5.
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First, we put relative phase variability throughout  the cycles (No Alignment) as in

previous studies.  Second, we put it everywhere but in a 100ms window around each endpoint

(Endpoint Alignment).  Oscillation frequency was 1 Hz, so 20% of the cycle was free of phase
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variability. Third, we put it everywhere but in a 100ms window around each peak velocity

(Velocity Alignment).  Fourth, we put it everywhere but in a 50ms window around the

endpoints and peak velocities (Critical Points Alignment).  As before, 4 levels of phase

variability were tested.  (With a 20% reduction in the EA, VA, and CPA conditions, these were

0°, 4°, 8°, and 12° phase SD as opposed to 0°, 5°, 10°, and 15° phase SD in the NA condition).

Only mean relative phases of 0° and 180° were tested.  Ten  observers judged phase variability

as in the previous experiments.  

If phase perception uses only the endpoints of oscillatory movement, then the increasing

levels of phase variability should have been invisible in the Endpoint Alignment condition

because there was no phase variability at the endpoints.  The judgment curves should be flat.

The logic was the same in the Velocity and Critical Points Alignment conditions under the

assumption that perception focuses on peak velocities or on critical points.
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As shown in Figure 6, the results did not confirm these predictions.  Instead, they revealed

that the entire trajectory is used to perceive relative phase. Looking at the 180° mean phase

condition, removal  of variability from endpoints decreased perceived variability somewhat

(as it should have because it was 20% less), but the remaining portions of the cycle were still

used to detect variations in phase variability.  However, removal of variability from the peak

velocities had no effect.  Removal from both peak velocity and endpoints in the CPA condition

had half the effect of removal from just endpoints, but in the CPA condition, the window
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around endpoints was half as large. That is, only 10% of the variability was removed around

the endpoints, the other 10% was removed at the peak velocities where it had no effect.  The

conclusion was that the whole trajectory is used, but phase variability at peak velocity is

invisible because movement there already  looks variable.  (The effect is similar to that for

phase variability at 90° mean phase shown in Figure 3.  Movement at 90° relative phase looks

variable intrinsically, so actual phase variability cannot be resolved.)  None of the alignment

manipulations had any effect for movement at 0° mean phase.  Accordingly, we concluded

that the entire trajectory is used, but resolution of relative phase varies with relative velocity

or the velocity difference between the two oscillators.  (With 0° mean phase, relative velocity

was always zero, or with noise, nearly so.)  Phase perception becomes unstable as the relative

velocity becomes large.

Next, we developed a model of bimanual coordination in which the role of phase

perception is explicit.  The goal was to account both for our phase judgment results and for

results from previous motor studies.  

Modeling the single oscillator  

Our perception studies had been inspired originally by the HKB model.  The HKB model is

a first order dynamical model in which relative phase is the state variable.  That is, the model

describes relative phase behavior directly without reference to the behavior of the individual

oscillators.   However, the model was derived from a model formulated by Kay, Kelso,

Saltzman and Schöner (1987) that did describe the oscillation of the limbs explicitly.   In this

latter model, the state variables are the positions and velocities of the two oscillators.  To

develop this model, Kay, et al. (1987) first modeled the rhythmic behavior of a single limb.  In

this and a subsequent study (Kay, Saltzman & Kelso, 1991), they showed that human rhythmic

limb movements exhibit limit cycle stability, phase resetting, an inverse frequency-amplitude

relation, a direct frequency-peak velocity relation, and, in response to perturbation, a rapid

return to the limit cycle in a time that was independent of frequency.   A dimensionality

analysis showed that a second-order dynamic with small amplitude noise is an appropriate
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model. The presence of a limit cycle meant the model should be nonlinear and a capability for

phase resetting entailed an autonomous dynamic.  Kay, et al. (1987) captured these properties

in a 'hybrid' model that consisted of a linear damped mass-spring with two nonlinear damping

(or escapment) terms, one taken from the van der Pol oscillator and the other taken from the

Rayleigh oscillator (hence the 'hybrid') yielding:

ẍ + b ẋ + α ẋ3 + γ x2 ẋ + k x = 0         (1)

This model was important because it captured the principle dynamical properties exhibited by

human rhythmical movements.  However, the relation between the terms of the model and

known components of the human movement system was unclear.  The damped mass-spring

was suggestive of Feldman's λ-model which represents a functional combination of known

muscle properties and reflexes.  Nevertheless, in the hybrid model,  the functional realization

of the nonlinear damping terms was unknown.  

Following a strategy described by Bingham (1988), Bingham (1995) developed an

alternative model to the hybrid model.  All of the components of the new model explicitly

represented functional components of the perception/action system.  First, the model

incorporated the  λ-model, that is, a linear damped mass-spring:

     ẍ  +  b  ẋ  +  k ( x  -  x
ep

 )  =  0   ẍ  +  b  ẋ  +  k ( x  -  x
ep

 )  =  0

This mass-spring must be driven to generate rhythmic movement.  This can be achieved by

moving the EP:  

    ẍ  +  b  ẋ  +  k ( x )  =  k ( x
ep

( t) )        ẍ  +  b  ẋ  +  k ( x )  =  k ( x
ep

( t) )    

If the timing is imposed, then the result is the standard forced oscillator:

   x )  ẍ  +  b  ẋ  +  k ( x )  =  c ( s in ( t) ) ,    c  =  f( k¨  +  b  ẋ  +  k ( x )  =  c ( s in ( t) ) ,    c  =  f( k )

The problem is that this is a nonautonomous dynamic, that is, a dynamic that would not

exhibit phase resetting.  Another problem is that limb movements are known to exhibit

organizations that are both energetically optimal and stable (e.g. Diedrich & Warren, 1995;

Margaria, 1976; McMahon, 1984).  Both energy optimality and stability are achieved by driving
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a damped mass-spring at resonance, that is, with the driver leading the oscillator by 90°.

Accordingly, Hatsopoulos and Warren (1996) suggested that this strategy might be used in

driving the Feldman mass-spring.  Bingham (1995) solved these problems by replacing time in

the driver by the perceived phase of the oscillator.  That is, instead of c sin(t) , the driver is c

sin(φ), where φ is the phase.  Because φ(= f[x, dx/dt] ) is a (nonlinear) function of the state

variables, that is, the position and velocity of the oscillator, the resulting dynamic is

autonomous.  The perceptually driven model is:

ẍ + b ẋ + k x = c sin[φ]    (2)
where

φ = arctan
 


ẋn

x  
  ,  ẋn = ẋ/ √k  and c = c (k). 

The amplitude of the driver is a function of the stiffness.  Bingham (1995) showed that this

oscillator yields a limit cycle.  This is also  shown in Figure 7 by rapid return to the limit cycle

after a brief perturbing pulse.  As also shown, the model exhibits the inverse frequency-

amplitude and direct frequency-peak velocity relations as frequency was increased from 1 hz

to 6 hz.  These relations are apparent in the first panel of Figure 7  showing a phase plot

generated by gradually increasing the frequency of  the oscillator.  In the second and third

panels, the model is compared to the human movement data reported by Kay, et al. (1987).
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Finally, the model exhibits a pattern of phase resetting that is similar to that exhibited by

the hybrid oscillator as shown in Figure 8.   The model is phase delayed by a delaying

perturbation and phase advanced by an advancing perturbation.  However, as shown in the
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second panel by the graph taken from Kay, et al. (1991), human participants exhibited phase

advance in response to all perturbations.  Following a suggestion in Kay, et al., we modified

the phase driven oscillator model to include a momentary increase in stiffness in response to a

perceived departure from the limit cycle as a result of perturbation (see the first panel of 

Figure 7).  k in equation (2) above was changed to

k = ki + γ et − ei   where en = (v2
n + x2) .5 

is both the radius of the trajectory on the phase plane and a measure of the energy of motion.

Thus, stiffness was incremented in proportion to the change in the radial coordinate in phase

space.  (The other coordinate is the phase angle, φ.)  Note that equation (2) remains

autonomous because en is a function of state variables x and v.  en is hypothesized as another

perceptual variable in addition to φ.  The result,  shown in the third panel of Figure 8, was a

pattern of phase response similiar to the human data.
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Figure 8.

Goldfield, Kay and Warren (1993) found that human infants were able to drive a damped

mass-spring at resonance.  The system consisted of the infant itself suspended from the spring

of a "jolly bouncer" which the infant drove by kicking.  This essentially instantiates the phase

driven oscillator model and shows that even infants can use perceived phase to drive such an

oscillator at resonance.  We hypothesize that all adult rhythmic limb movements are organized

in this way.
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Modeling coupled oscillators

With this model of a single oscillating limb, we were ready to model the coupled system.

Kay, et al. (1987) had modeled the coupled system by combining two hybrid oscillators via a

nonlinear coupling:

ẍ1 + b ẋ1 + α ẋ3
1 + γ x2

1  ẋ1 + k x1 = 

                      (ẋ1 − ẋ2)[ a + b (x1 − x2 )2]            

ẍ2 + b ẋ2 + α ẋ3
2 + γ x2

2 ẋ2 + k x2 = 

                      (ẋ2 − ẋ1)[ a + b (x2 − x1 )2]        (3)

This model required that people simultaneously perceive the instantaneous velocity difference

between the oscillators as well as the instantaneous position differences so that both could be

used in the coupling function.  This model did yield the two stable modes (namely, 0° and 180°

relative phase) at frequencies near 1 hz, and mode switching from 180° to 0° relative phase at

frequencies between 3 hz and 4 hz.  

We have proposed an alternative model (Bingham, 2001; Bingham & Collins, in

preparation) in which two phase driven oscillators are coupled by driving each oscillator using

the perceived phase of the other oscillator multiplied by a term, Ρ, that represents the

perceived relative phase.  Ρ is computed as the sign of the product of the two drivers.  Ρ

simply indicates at each instant whether the two oscillators are moving in the same direction

(sgn = +1 ) or in opposite directions ( sgn = –1 ).  The model is:  

ẍ1 + b ẋ1 + k x1 = c sin(φ2) Ρij           

ẍ2 + b ẋ2 + k x2 = c sin(φ1) Ρji      (4)

where

Ρ = sgn(sin(φ1) sin(φ2) + α(ẋi − ẋj) Νt )     (5)

As shown in equation (5), the product of the two drivers is incremented by a Gaussian noise

term with a time constant of 50 ms and a variance that is proportional to the velocity
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difference between the oscillators.  This noise term reflects known sensitivities to the directions

of optical velocities (De Bruyn & Orban, 1988; Snowden & Braddick, 1991) and is motivated by

the results from the phase perception experiment described above. We found that relative

phase appeared more variable as the relative velocity of the two oscillators increased.  It is

important to note that this noise term does not imply that the velocity difference is perceived,

but only that the ability to resolve the relative direction of movement is affected by the

relative speeds.   This model also yields only two stable modes (at 0° and 180° relative phase)

at frequencies near 1 hz, and yields mode switching from 180° to 0° relative phase at

frequencies between 3 hz and 4 hz.  This is shown in Figure 9 where the oscillators were

started at 180° at 1 hz and then, as the frequency was increased, exhibited increasing variability

in relative phase eventually switching to 0° (360°) at a frequency of about 4 hz.  After the

switch, the variability decreased strongly.
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Furthermore, the model predicts our results for judgments of mean relative phase and of

phase variability.  Judged mean phase is produced by integrating Ρ over a moving window of

width σ (= 2 s) to yield PJM :

PJM = 
∫  t 

  t –  σ
 Ρ dt

σ   (6)

Judged phase variability is predicted by integrating (Ρ−PJM)2 over the same window to yield

PJV : 
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PJV = 
∫  t 

  t –  σ
 [Ρ − PJM] 2dt

σ   (7)

PJM varies linearly with actual mean phase and PJV yields an asymmetric inverted-U as a

function of actual mean phase as shown in Figure 10.  As also shown, PJM and PJV behave as

did the respective judgments in response to increases in the frequency of oscillation.  Compare

Figure 10  to Figure 4.  The model reproduced the results from the judgments studies where

observers judged either mean relative phase or phase variability.  (These results were obtained

using an external forcing to drive the system to phases other than 0° and 180° (Tuller & Kelso,

1989):

x
1
 +  b ẋ

1
 +  k x

1
 =  c  sin ( φ2)  Ρ

ij
 +  d  s i n ( √ k t  )   

x
2
 +  b ẋ

2
 +  k x

2
 =  c  sin ( φ1)  Ρ

ji
 +  d  s i n ( √ k t  +  φR

)            

˙˙

˙˙

where φR was manipulated to achieve particular relative phase relations.)
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Figure 10.

There are two aspects of the perceptual portions of the model that should be emphasized.

First, there are actually two perceptible properties entailed in the model.  The two are very
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closely related, but they are distinct.  The first is the phase of a single oscillator.  The perception

thereof is entailed in the single oscillator model.  This is, of course, incorporated into the

coupled oscillator model.  The second perceptible property is relative phase.  This latter

property brings us to the second aspect of the model to be noted.  This is especially important.

This model is being used to model performance in two different tasks, one is a coordinated

movement task and the other is a judgment task.  Equation (5) represents the way the

perception of relative phase plays a role in the coordinated movement task.  This is in terms of

the momentary value of Ρ, that is, whether the oscillators are perceived to be moving in the

same or in opposite directions at a given moment in time.  This modifies the driving effect of

the respective perceived phases.  In contrast, equations (6) and (7) represent the way the

perception of relative phase plays a role in the judgment tasks.  In this case, the behavior of Ρ

is assessed (that is, integrated) over some window of time that is large enough to span one or

two cycles of movement.  So, the two tasks are connected by a single perceptible property, but

the way the property is evaluated and used is task-specific. 

The model is representative of nonlinear dynamics: complex behavior emergent from

simple dynamic organization.  The model captures both the movement results and results of

perceptual judgments.  Two relatively simple equations (4) capture the fundamental properties

of human rhythmic movements: limit cycle stability, phase resetting, inverse frequency-

amplitude and direct frequency-peak velocity relationships, the stable modes and mode

transitions and the increasing patterns of instability leading up to mode transition.  With the

addition of two more simple equations (6) and (7) computing a mean and a variance, the

model accounts for the results for perceptual judgments of mean relative phase and of phase

variability and the ways these vary with the frequency of movement.  All this from a model

with 6 parameters ( k, b, c, α , γ, and σ), four of which are fixed and one, k, is varied to generate

variations in frequency of movement.  (Note: because c=f(k), c varies with k but once the

scaling of c is fixed, this does not represent an extra degree of freedom.)

This model builds on the previous results of Kay et al. (1987) and Kay et al. (1991) which

revealed fundamental dynamic properties of human movement.  Those properties are
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captured by the new model as they were by previous models.  However, unlike the previous

models, the new model is an explicit perception/action model.  Its components are

interpretable in terms of known components of the perception/action system. It explicitly

represents the perceptual coupling that is well recognized to be fundamental to the

coordination task and the resulting bimanual behaviors.    

φ and τ

We began by studying the visual perception of relative phase and indeed, we found that

the pattern of judgments was consistent with the pattern of results from studies on rhythmic

limb movement.  We should mention that we have also replicated the visual phase perception

results in a haptic phase perception task (Wilson, Craig & Bingham, in preparation).  However,

when we turned to modeling, it was necessary to consider a related but different variable,

namely, phase φ .  Both phase and relative phase are required for the model of bimanual

coordination.  Phase is required in the context of each single oscillator while relative phase is

required in addition for their coordination.  (In fact, for the single oscillator, we ultimately

required a third perceptible variable, the ‘energy’ e.)    

It is the phase that is most relevant in the current context.  As a perceptible variable, phase

φ is very similar to τ.  However, they are not the same.  Both are derived as a ratio of position

and velocity , that is, variables that may be state variables in a dynamic system.  In terms of

these variables,

φ = arctan
 



1
τ . f  


    ( 8)

but this is not entirely appropriate because there are constraints on the underlying space for τ

that do not apply for φ and visa versa.  τ is defined to describe motion relative to (usually an

approach to) an origin along the positive half of the x axis, that is, the range of x includes

positive values and zero.  Alternatively, φ is defined relative to the equilibrium point of an

oscillator and x takes on both positive and negative values around an origin located at the

equilibrium point.  Then, while both are timing or time relative variables, only τ is a temporal
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variable.  Dimensionally, φ is dimensionless, more specifically, angular.  As shown in equation

(8), the ratio of state variables is normalized by frequency, f.  Thus, unlike τ, φ is defined

relative to a cyclic or periodic structure.  The oscillatory dynamic is intrinsic to φ, but not to τ.

So, φ is certainly not the same as τ, but they reflect similar strategies for understanding and

modeling perception/action systems.  Both are derived in terms of ratios of spatial variables

so both avoid the classic measurement problem in space perception.  Relatedly, both are

intrinsic timing variables and so relate directly to timing of behavior.  Finally, both are derived

from variables that can play the role of state variables in a dynamic system.  This means that

they can be used as drivers to  build autonomous dynamical organizations to model stable,

self-organizing perception/action systems.     

Phase perception and dynamics of bimanual coordination 22



REFERENCES

Bingham, G.P. (1988).  Task specific devices and  the perceptual bottleneck. Human

Movement Science , .  

Bingham, G.P. (1995).  The role of perception in timing:  Feedback control in motor

programming and task dynamics.  In E.Covey, H. Hawkins, T. McMullen & R. Port (eds.)

Neural Representation of Temporal Patterns , pp. 129-157.  New York: Plenum Press.

Bingham, G.P. (2001).  A perceptually driven dynamical model of rhythmic limb

movement and bimanual coordination.  Proceedings of the 23rd Annual Conference of the

Cognitive Science Society , (pp. 75-79).  Hillsdale,  N.J., LEA Publishers.

Bingham, G.P. & Pagano, C.C. (1998).  The necessity of a perception/action approach to

definite distance perception:  Monocular distance perception to guide reaching.  Journal of

Experimental Psychology:   Human Perception and Performance , 24 ,  145-168.

Bingham, G. P., Schmidt, R. C.., Zaal, F. T. J. M. (1998). Visual perception of relative

phasing of human limb movements. Perception & Psychophysics ,  61, 246-258.

Bingham, G.P.,  Zaal, F., Robin, D. & Shull, J.A. (2000).  Distortions in definite distance and

shape perception as measured by reaching without and with haptic feedback.  Journal of

Experimental Psychology:   Human Perception and Performance , 26(4), 1436-1460.   

Bingham, G.P., Zaal, F.T.J.M.,  Shull, J.A. and Collins, D.R.  (2001). The effect of frequency

on visual perception of relative phase and phase variability. Experimental Brain Research, 136 ,

543-552.

Bizzi, E., Hogan, N., Mussa-Ivaldi, F. & Giszter, S. (1992).  Does the nervous system use

equilibrium point control to guide single and multiple joint movements? Behavioral and Brain

Sciences , 15, 603-613.

Collins, D.R. & Bingham, G.P. (in press).  How continuous is the perception of relative

phase? InterJournal: Complex Systems, MS # 381. 

De Bruyn, B. & Orban, G.A. (1988).  Human velocity and direction discrimination

measured with random dot patterns.  Vision Research , 28, 1323-1335.

Diedrich, F.J. & Warren, W.H. (1995).  Why change gaits?  Dynamics of the walk-run

Phase perception and dynamics of bimanual coordination 23



transition.  Journal of Experimental Psychology: Human Perception and Performance, 21, 183-

202.

Feldman, A.G. (1980).  Superposition of motor programs-I. rhythmic forearm

movements in man.  Neuroscience , 5, 81-90.

Feldman, A.G. (1986).  Once more on the equilibrium-point hypothesis (λ model) for

motor control.  Journal of Motor Behavior , 18(1), 17-54.

Feldman, A.G., Adamovich, S.V., Ostry, D.J. & Flanagan, J.R. (1990).  The origin of 

electromyograms- Explanations based on the equilibrium point hypothesis.  In Winters, J.M. &

S. L-Y. Woo (eds.)  Multiple Muscle Systems:  Biomechanics and Movement Organization .  New

York:  Springer-Verlag.

Goldfield, E.C, Kay, B.A. & Warren, W.H. (1993). Infant bouncing:  The assembly and

tuning of an action system.  Child Development , 64, 1128-1142.

Haken, H., Kelso, J. A. S., & Bunz, H. (1985). A theoretical model of phase transitions in

human hand movements. Biological Cybernetics , 51, 347-356.

Hatsopoulos, N.G. & Warren, W.H. (1996).  Resonance tuning in arm swinging.  Journal

of Motor Behavior , 28, 3-14.

Hogan, N., Bizzi, E., Mussa-Ivaldi, F.A. & Flash, T. (1987).  Controlling  multijoint motor

behavior.  In Pandolf, K.B. (ed) Exercise and Sport Sciences Reviews V15 , (pp 153-190).  New

York: MacMillan. (esp. pp.167-170).

Jordan, D.W. & Smith, P. (1977).  Nonlinear Ordinary Differential Equations .  Oxford,

England:  Clarendon.

Kay, B.A., Kelso, J.A.S., Saltzman, E.L. & Schöner, G. (1987).  Space-time behavior of single

and bimanual rhythmical movements:  Data and limit cycle model.  Journal of Experimental

Psychology: Human Perception and Performance , 13, 178-192.

Kay, B.A., Saltzman, E.L. & Kelso, J.A.S. (1991).  Steady-state and perturbed rhythmical

movements:  A dynamical analysis.  Journal of Experimental Psychology: Human Perception

and Performance , 17, 183-197.

Kelso, J. A. S. (1984). Phase transitions and critical behavior in human bimanual

Phase perception and dynamics of bimanual coordination 24



coordination. American Journal of Physiology: Regulation, Integration, and  Comparative

Physiolology , 15, R1000-R1004.

Kelso, J. A. S. (1990). Phase transitions: Foundations of behavior. In H. Haken and M.

Stadler (eds.), Synergetics of cognition . Springer Verlag, Berlin, pp. 249-268 

Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. MIT

Press, Cambridge, MA.

Kelso, J. A. S., Scholz, J. P., Schöner, G. (1986). Nonequilibrium phase transitions in

coordinated biological motion: Critical fluctuations. Physics Letters A, 118, 279-284.

Kelso, J. A. S., Schöner, G., Scholz, J. P., Haken, H. (1987). Phase-locked modes, phase

transitions and component oscillators in biological motion. Physica Scripta, 35, 79-87.

Latash, M.L. (1993).  Control of Human Movement. (Ch 1: What muscle parameters are

controlled by the nervous system? pp. 1-37 and Ch 3:  The equilibrium-point hypothesis and

movement dynamics, pp. 81-102.)  Campaign, IL:  Human Kinetics.

Margaria, R. (1988).  Biomechanics and energetics of muscular exercise.  Oxford:

Clarendon Press.

McMahon, T.A. (1984).  Muscles, reflexes, and locomotion .  Princeton, N.J.: Princeton

University Press.

Schmidt, R. C., Carello, C., Turvey, M. T. (1990). Phase transitions and critical fluctuations

in the visual coordination of rhythmic movements between people.  Journal of Experimental

Psychology: Human Perception and Performance , 16, 227-247.

Schöner, G. (1990).  A dynamic theory of coordination of discrete movement.  Biological

Cybernetics , 63, 257-270.

Schöner, G. (1991).  Dynamic theory of action-perception patterns:  The “moving room”

paradigm.  Biological Cybernetics ,  64, 455-462.

Snowden, R.J. & Braddick, O.J. (1991).  The temporal integration and resolution of

velocity signals.  Vision Research , 31, 907-914.

Tittle, J. S., Todd, J. T., Perotti, V. J., & Norman, J. F. (1995). Systematic distortion of

perceived three-dimensional structure from motion and binocular stereopsis. Journal of

Phase perception and dynamics of bimanual coordination 25



Experimental Psychology:  Human Perception and Performance, 21 (3), 663-678. 

Todd, J. T., Tittle, J. S., & Norman, J. F. (1995). Distortions of three-dimensional space in the

perceptual analysis of motion and stereo. Perception, 24 , 75-86.

Tuller, B., Kelso, J. A. S. (1989). Environmentally specified patterns of movement

coordination in normal and split-brain subjects. Experimental Brain Research , 75, 306-316.

Wimmers, R. H., Beek, P. J., van Wieringen, P. C. W. (1992). Phase transitions in rhythmic

tracking movements: A case of unilateral coupling. Human Movement Science 11, 217-226.

Zaal, F.T.J.M., Bootsma, R.J. & van Wieringen, P.C.W. (1998).  Coordination in prehension:

Information-based coupling of reaching and grasping.  Experimental Brain Research , 119, 427-

435.

Zaal, F.T.J.M., Bootsma, R.J. & van Wieringen, P.C.W. (1999). Dynamics of reaching for

stationary and moving objects:  Data and model. Journal of Experimental Psychology: Human

Perception and Performance , 25, 149-161.

Zaal, F.T.J.M., Bingham, G.P., Schmidt, R.C. (2000). Visual perception of mean relative

phase and phase variability.   Journal of Experimental Psychology: Human Perception and

Performance , 26, 1209-1220.

Phase perception and dynamics of bimanual coordination 26



AUTHOR NOTES

Please send all correspondence to:  Geoffrey P. Bingham, Department of Psychology, 1101

East Tenth Street, Indiana University, Bloomington, IN 47405-7007.  Email:

gbingham@indiana.edu. 

Phase perception and dynamics of bimanual coordination 27


