

Perceiving 3D objects: better with motion

SFM

 Unambiguously perceiving 3D <u>structures</u> when objects <u>moves</u>.

SFM

But what about after motion?

Embodied Memory for Efficient and Stable Perceptually Guided Performances:

The Advantage and Necessity to Combine Optic Flow and Image Structure Information

Overview

- What is the optical information that allows observers to effectively perceive objects / events / scenes in 3D environments?
 - Effective: accurate, efficient and stable
- Proposed answer: combined optic flow and image structure info
- Studies showing that combined optic flow and image structure yielded effective perception in:
 - Identifying previously observed but currently hidden objects
 - Identifying camouflaged targets
 - Identifying targets with orientation change
 - Identifying events with low vision
 - Identifying scenes with simulated low vision

When moving

Image structure

<u>Image structures</u>: **static** optical structures/patterns that are detectable by the eye and may specify properties of objects (e.g. size, spatial structure).

Optic flow

<u>Optic flow</u> is produced by relative **motion** between an observer and surrounding objects/surfaces; and specifies the relation between them.

For a given surface in the world, the optic flow pattern (its speed) is inversely proportional to the distance between it and the observer.

Optic flow provides a depth map of the surrounding surfaces/objects.

Unitary system of vision: Optic flow calibrates image structure. Image structure forms **embodied memory** for spatial relations specified by optic flow.

Exp 2: Image structure alone Exp 3: Combined information does not specify locations of hidden objects Information: Image structure + Optic Flow N Targets: 9, 12, 15, or 18 N Distracters: 12 • Participants did not identify any target. 2 levels of delays: 5s, 25s 'NoBlank' Manipulated persistence of image structure: - Blank vs. No blank 5 25 Delay (seconds)

Study 2: Camouflage

What optical information breaks camouflage and enables accurate and stable perception?

Messages from Study 3

- Embodied memory allows effective perception of hidden targets, even with orientation change.
 - If seeing tilting, then OC had no effect on identifying hidden targets (Exp 1, Exp 2).
 - If not seeing tilting, identifying hidden targets with OC became worse (Exp 1, Exp 3).
- Embodied memory > mere knowledge of OC
 - When not seeing tilting, but knowing tilting direction and amount, identification performance was not as good as seeing tilting.

Low vision: a loss of visual acuity and/or contrast sensitivity that is uncorrectable by lens or spectacles.

Visual acuity < 0.3, in the better eye with the best possible correction.

246 million people in the world have low vision.

Low vision occurs more in developing countries, in females and in people age 50 and above.

STUDY 4: PERCEIVING EVENTS WITH

A clinical application

The interaction between (poor) image structure and (unimpaired) optic flow enable effective perception of events.

Predictions

- (1) Blurry images alone are unable to specify events.
- (2) Optic flow calibrates the blurry images and allows events to become perceptible.
- (3) Once calibrated, the image structure forms embodied memory for info in the transient optic flow.

The low vision experiment Materials: Eight daily events; blurred to simulate low vision. Task: Describing events depicted in the images or sequences of images, in five ordered conditions.

(1) Still images, one at a time.

The low vision experiment

Materials: Eight daily events; blurred to simulate low vision.

Task: Describing events depicted in the images or sequences of images, in five ordered conditions.

(1) Still images, one at a time. (2) 20 still images with white screens in between.

The low vision experiment

Materials: Eight daily events; blurred to simulate low vision.

Task: Describing events depicted in the images or sequences of images, in <u>five ordered conditions</u>.

- (1) Still images, one at a time.
- (2) 20 still images with white screens in between.
- (3) 20 still images without white screens in between.

The low vision experiment

Materials: Eight daily events; blurred to simulate low vision.

Task: Describing events depicted in the images or sequences of images, in <u>five ordered conditions</u>.

- (1) Still images, one at a time.
- (2) 20 still images with white
- screens in between. (3) 20 still images without white
- screens in between.
- (4) Still images, one at a time.
- (5) Still images, 5 days later.

To understand how low vision individuals perceive and act, motion (optic flow) should be taken into consideration.

- Relative motions between the observer and the environment aided perception.
- What happens when a locomoting observer with blurry vision observes the stationary surround?
- Available optical info: some image structure info; translational optic flow and/or rotational optic flow
- Research question: We examine the accuracy and temporal stability of scene perception, when blurry images are paired with translational flow, rotational flow or combined flow.

